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Abstract—The identification of electrical activity inside the brain requires to find the position and amplitude of electrical sources
related to neural energizing. This task is approached by means of an optimization algorithm trying to find the minimum error
between the electric potential created by a current dipole source and the one obtained by an electroencephalographic experiment.
The identification problem is carried on a discretized head model obtained by a segmentation of MRI data. Brain activity is
experimentally studied by fMRI technique to identify the active region of electrical activity. The optimization algorithm used is
Artificial Immune System and its performances are first studied on a model problem. Results obtained are encouraging both in
terms of accuracy and of convergence speed.

Index Terms—Bioelectric fields, inverse EEG, source localization.

I. INTRODUCTION

The localization problem of brain sources from scalp poten-
tial recordings is a key problem in computational bio- elec-
tromagnetism, and its solution is an active research field [1].
Primary sources are generally modeled as ideal point current
dipoles. In the up-to-date literature the source location inverse
problem from the knowledge of scalp potentials is commonly
solved by Nelder-Mead simplex method [2]. The functional to
be minimized is a suitable norm of the reconstruction error.
The identification problem is known to be ill-posed [3], thus
the simplex method requires multi-start and it can fail when
the nodes of the simplex fall inside a single element. In this
paper the identification problem is solved by means of AIS
a stochastic algorithm whose main characteristic is the ability
of searching optimal solution in multimodal objective function
landscapes.

II. AIS ALGORITHM

Artificial Immune systems are a class of algorithms inspired
by the working of biological immune systems. Their common
idea is related to the exploration of the objective function
landscape by several different antibodies which are points in
configuration space. As in nature the strength point of the
immune system is based on diversity of antibodies, so that they
can fight with different pathogen issues at the same time, also
in optimization different searching points can find their way
toward the optimum. As a complete description of the scheme
can be found in [4], here only its main characteristics are
described. The algorithm is structured in two nested loops, as
outlined in Fig. 1. In the inner loop two operators are applied
to the population: cloning and mutation and clonal selection.
The individuals of the previous iteration, called memory cells,
are reproduced in copies of the original. Then, each clone is
locally mutated by a random perturbation, in order to find a
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Fig. 1. Flowchart of the opt-aiNet algorithm.

high-affinity (high-fitness) cell. The best mutated clone for
each cell replaces the original memory cell. In the outer
cycle the affinity and suppression operators are applied to the
population. The Euclidean distance between memory cells is
measured; all but the highest fitness cells whose distances are
less than a threshold are suppressed. The suppressed cells are
then replaced with new randomly generated cells. In order
to maintain the diversity of solutions and to obtain a good
exploration of the space of the parameters, at each iteration a
minimum number of new cells is guaranteed. Both loops end
if the average fitness of the memory cells does not improve
between two iterations or if the number of iterations reaches
the maximum value.



TABLE I
GEOMETRY AND TISSUE PROPERTIES (fref = 20 Hz)

tissue outer radius conductivity
cm S/m

scalp 9.2 0.43478
skull 8.74 0.00625
CSF 8.28 1.538
gray matter 7.82 0.3334
white matter 7.37 0.1428

III. MODEL PROBLEM

The testing phase of the algorithm is performed on a
model problem whose characteristics (number of unknowns,
amplitude of active region etc.) can be easily changed for
working purposes. The problem geometry is a modified five-
layer spherical model Fig. 2(a): the geometrical and material
parameters are reported in Table I. This discretization is
characterized by 61565 hexahedra and 67368 nodes. The
Active region is defined as the intersection of an ellipsoid of
given centre and axes and the set of grey and white matter, as
it can be seen in Fig. 2(b). The Lead field matrix is computed
by means of a Cell Method approach as it has been described
in [5], [6].

The direct problem is then defined by setting arbitrarily the
position, orientation and amplitude of a current dipole inside
the active region and computing the electric potential on a set
of seventeen electrodes on sphere surface. On this set of data
an objective function is defined as the quadratic norm of the
error of the potentials created by a current dipole and those
previously computed. The degrees of freedom of the objective
function are the (x, y, z) coordinates of a dipole and its three
components of current orientation (ix, iy, iz). These two sets
of variables are not treated in the same way: current dipole
components are set, once position is defined, by means of a
normal equation approach, which implies the solution of a
linear system of the number of electrodes dimensions. The
position of the dipole is managed by the AIS algorithm as
previously described. Due to the regular mesh discretization,
the step of the mutation of position is taken as a small multiple
of the mesh amplitude size.

The objective function landscape is not regular and its
exploration has been attempted by using a Pattern Search
algorithm starting it from every point of the active region. In
the present case, out of 1067 nodes belonging to the active
region, only 12 Pattern Search runs were able to find the
global optimum and the position of the starting points were
not contiguous so that it was not possible to define a compact
area of attraction of the minimum. Preliminary results obtained
on the model problem in a case with a number of degrees
of freedom comparable with the actual head discretization,
allow to state that the procedure is working correctly and
that it is able to find the global optimum in a number of
trials which is always lower than 16% of the whole number
of configurations. Procedure will be tuned up on the model
problem and then it will be tested on the head. Results on the
head will be presented at the conference. In the full-length
paper the case study will be solved also in terms of a bi-
objective optimization problem [7], the objective functions
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Fig. 2. (a) Discretization of the model problem, and (b) active region used
in the optimization.

Fig. 3. Convergence plot in five different optimization runs.

being:
• discrepancy between reference potential and computed

potential on the scalp, to be minimized with respect to
the dipole position, and

• number of activated edges in the cell grid discretizing the
active region, to be minimized too in order to cut spurious
solutions off. The comparison with results from AIS will
follow. In particular, the role played by major operators
in each algorithm (like mutation in AIS and cross-over
in multi-objective procedure) will be discussed.
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